skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ren, Yuxing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin‐orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V‐doped (Bi,Sb)2Te3(VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 10A cm−2, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge‐state‐mediated to surface‐state‐mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10−6 T A−1 cm2and the interfacial charge‐to‐spin conversion efficiency to 3.9 ± 0.3 nm−1. The findings establish VBST as an extraordinary candidate for energy‐efficient magnetic memory devices. 
    more » « less